


If G(r) = lf)e'k(g_m]D + 4, determine the flux of G out of the entire surface of the cylinder
p=1,0= 7= 1. Confirm the result using the divergence theorem.




[f ¥ is the flux of G through the given surface, shown in Figure 3.17, then
V= #ZGJSE lPt'|']ﬂ-,+ 'PS

where ¥, ¥,, and ¥, are the fluxes through the top, bottom, and sides (curved surface) of

the cylinder as in Figure 3,17,
For ¥,z =1,dS = pdpdda.. Hence,
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For ¥,z = 0 and dS = p dp dé(—a,). Hence,
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For ¥, p = 1.dS = pdzdg a,. Hence,
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Alternatively, since § 1s a closed surface, we can apply the divergence theorem:

Y= % G-dS = [(T"'G)dv
S
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showing that G has no source. Hence,

Y= [(7-G)du=ﬂ
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